Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock.
نویسندگان
چکیده
Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.
منابع مشابه
Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks
Storage of anthropogenic CO2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO2 escaping. Although natural CO2 reservoirs demonstrate that CO2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO2-bearing brines. This uncertainty poses a significant challenge to the risk assessment of ge...
متن کاملThe Widespread Occurrence of Coupled Carbonate Dissolution/Reprecipitation in Surface Sediments on the Bahamas Bank
Using two complimentary approaches (pore water advection/diffusion/ reaction modeling and stable isotope mass balance calculations) we show that carbonate dissolution/reprecipitation occurs on early diagenetic time scales across a broad range of sediments on the Great Bahamas Bank. The input of oxygen into the sediments, which strongly controls sediment carbonate dissolution, has two major sour...
متن کاملRedeveloping Mature Fractured Carbonate Reservoirs
Naturally fractured carbonate reservoirs (NFCRs) comprise the majority of the oil and gas reservoirs around the Persian Gulf. Many of these reservoirs have a long history of exploitation, but vast amounts of oil remain in place. A major redevelopment process for light oil based NFRs will likely be the use of horizontal wells combined with gravity drainage at constant pressure based on voidage...
متن کاملDIAGENESIS AND RESERVOIR QUALITY EVOLUTION OF SHELF-MARGIN SANDSTONES IN PEARL RIVER MOUTH BASIN, SOUTH CHINA SEA
A study of the diagenetic evolution of sandstones from Panyu low-uplift in the Pearl River Mouth Basin was carried out to unravel the controls on shelf margin sandstone reservoir quality. The reservoir rocks, Oligocene volcanic clastic sandstones of the Zhuhai Formation, have a burial depth of 2765 to 3440 m. 70 samples were studied using the granulometric analyses, X-ray diffraction (XRD) anal...
متن کاملPorosity evolution and diagenetic history of the upper Jurassic Mozduran Formation, eastern Kopet-Dagh Basin, NE Iran
The Upper Jurassic carbonates of the eastern part of the Kopet-Dagh Basin, with thickness of 470 m, are the major gas-bearing reservoir in NE Iran. The objectives of this study are recognition of diagenetic history and estimation of porosity related to dolomitization. Based on field and laboratory study, four carbonate facies associations have been identified at the Mazdavand outcrop. Most of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental engineering science
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2013